HomeMemberAchievementStudyEventLinkBonusContact

原著論文

  1. R. Kubo, K. Ohta, S. Funakawa, N. Kitabatake, S. Araki, and S. Izawa (2014) Isolation of lactic-acid tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage. J. Biosci. Bioeng., (in press).
  2. T. Nguyen, S. Kitajima, and S. Izawa (2014) Importance of glucose-6-phosphate dehydrogenase(G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng., (in press).
  3. T. Nguyen, A. Iwaki, Y. Ohya, and S. Izawa (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J.Biosci.Bioeng., 117,33-38.
  4. Y. Yamamoto and S. Izawa (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells, 18(11), 974-84.
  5. A. Iwaki, S. Ohnuki, Y. Suga, S. Izawa and Y. Ohya (2013) Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling. PLoS ONE, 8(4), e61748.
  6. A. Iwaki, T. Kawai, Y. Yamamoto, and S. Izawa (2013) Biomass conversion inhibitors, furfural and 5-hydroxymethylfurfural, induce the formation of mRNP granules and attenuate translation activity in yeast. Appl. Environ. Microbiol., 79(5), 1661-7.
  7. A. Iwaki and S. Izawa (2012) Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem J., 446(2), 225-33.
  8. K. Kamo, A. Takabatake, Y. Inoue, and S. Izawa (2012) Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 420(1), 119-23.
  9. A. Yoshida, D. Wei, W. Nomura, S. Izawa, and Y. Inoue (2012) Reduction of glucose uptake through Inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J. Biol. Chem., 287 (1), 701-711.
  10. Y. Ukai, T. Kishimoto, T. Ohdate, S. Izawa, and Y. Inoue (2011) Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem. Biophys. Res. Commun., 411(3), 580-585.
  11. K. Kato, Y. Yamamoto, and S. Izawa (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast, 28 (5), 339-347
  12. K. Ikeda, S. Kitagawa, T. Tada, H. Iefuji, Y. Inoue, and S. Izawa (2011) Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl. Microbiol. Biotechnol., 89 (6), 1971-1977.
  13. S. Izawa, K. Ikeda, T. Miki, Y. Wakai, and Y. Inoue (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl. Microbiol. Biotechnol., 88 (1), 277-282.
  14. Y. Takatsume, T. Ohdate, K. Maeta, W. Nomura, S. Izawa, and Y. Inoue (2010) Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca2+ in Saccharomyces cerevisiae: FK506 has an additive effect on the Ca2+-induced expression of GLO1 via Msn2, Hog1, and the stress response element. Biochem. J., 427 (2), 275-287
  15. W. Nomura, K. Maeta, K. Kita, S. Izawa, and Y. Inoue (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2α independently of the TOR pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 86 (6), 1887-1894.
  16. S. Izawa (2010) Ethanol stress response in mRNA flux of Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem., 74(1), 7-12.
  17. T. Ohdate, S. Izawa, K. Kita, and Y. Inoue (2010) Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca2+ in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca2+ signaling. Genes Cells, 15 (1), 59-75.
  18. S. Izawa and Y. Inoue (2009) Posttranscriptional regulation of gene expression in yeast under ethanol stress. Biotech. Appl. Biochem., 53 (Pt2), 93-99.
  19. W. Nomura, K. Maeta, K. Kita, S. Izawa, and Y. Inoue (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2 alpha. Biochem. Biophys. Res. Commun., 376 (4), 738-742.
  20. S. Izawa, T. Kita, K. Ikeda, and Y. Inoue (2008) Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem. J., 411 (1), 111-119.
  21. T. Miki, Y. Ito, K. Kuroha, S. Izawa, and T. Shinohara (2008) Potential of yeasts isolated from botrytized grape to be new wine yeast. Food Sci. Tech. Res., 14 (4), 345-350.
  22. Y. Takatsume, S. Izawa, and Y. Inoue (2007) Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun., 363 (4), 942-947.
  23. S. Izawa, T. Kita, K. Ikeda, T. Miki, and Y. Inoue (2007) Formation of the cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci. Biotechnol. Biochem., 71 (11), 2800-2807.
  24. Y. Takeuchi, W. Nomura, T. Ohdate, S. Tamasu, H. Masutani, K. Murata, S. Izawa, J. Yodoi, and Y. Inoue (2007) Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl. Microbiol. Biotechnol., 75 (6), 1393-1399.
  25. S. Izawa, K. Ikeda, N. Takahashi, and Y. Inoue (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl. Microbiol. Biotechnol., 75 (3), 533-538.
  26. Y. Inoue, W. Nomura, Y. Takeuchi, T. Ohdate, S. Tamasu, A. Kitaoka, Y. Kiyokawa, H. Masutani, K. Murata, Y. Wakai, S. Izawa, and J. Yodoi (2007) Efficient extraction of thioredoxin from Saccharomyces cerevisiae with ethanol. Appl. Environ. Microbiol., 73 (5), 1672-1675.
  27. K. Maeta, W. Nomura, Y. Takatsume, S. Izawa, and Y. Inoue (2007) Green tea polyphenols function as prooxidants to activate oxidative stress-responsive transcription factors in yeasts. Appl. Environ. Microbiol., 73 (2), 572-580.
  28. S. Izawa, K. Ikeda, T. Ohdate, and Y. Inoue (2007) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem. Biophys. Res. Commun., 352 (3), 750-755.

著書

  1. 井沢真吾 分担執筆 (2013) 第4章 RNAの輸送・代謝制御 p51-65 原島 俊・高木博史 編「酵母の生命科学と生物工学 産業応用から基礎科学へ」  化学同人、京都.
  2. 北本かつひこ 編 井沢真吾.分担執筆 (2011) エタノールストレス応答および醸造過程における酵母mRNA動態とオルガネラ形態変化の解析、「発酵・醸造食品の最新技術と機能性2」シーエムシー出版.

総説・解説

  1. 井沢真吾 (2013) リグノセルロース系バイオマス由来発酵阻害剤による酵母の翻訳阻害とmRNP顆粒の形成. バイオサイエンスとインダストリー 71(5), 416-419.
  2. 井沢真吾 (2010) 大豆ペプチドを利用した発酵食品微生物の改変. 食品加工技術 30 (4), 1-8.
  3. 井沢真吾 (2010) 可食天然素材を利用した遺伝子組み換え技術に頼らない食品微生物の改変. New Food Industry 52 (11), 9-16.
  4. 井沢真吾 (2010) 出芽酵母のエタノールストレス応答におけるmRNAの動態 〜mRNAのhyperadenylationとP-body・Stress granuleの形成〜. 日本醸造協会誌 105 (2), 63-68.
  5. 井沢真吾、井上善晴 (2008) 酵母のエタノールストレス応答と転写後遺伝子発現調節. バイオサイエンスとインダストリー 66 (10), 557-561.
  6. 井沢真吾 (2008) 酵母の中性脂肪問題. 生物工学会誌 86 (8), 397.

戻る

Copyright (C) 2012 Kyoto Institute of Technology. Yeast group. All Rights Reserved.